skip to main content


Search for: All records

Creators/Authors contains: "Troy, Tara J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Sustainable agricultural water systems are critical to ensure prosperous agricultural production, secure water resources, and support healthy ecosystems that sustain livelihoods and well-being. Many growing regions are using water unsustainably, leading to groundwater and streamflow depletion and polluted water bodies. Often, this is driven by global consumer demands, with environmental and social impacts occurring in regions far from where the crop is ultimately consumed. This letter defines sustainable agricultural water limits, both for quantity and quality, tying them to the impacts of agricultural water use, such as impacts on ecosystems, economies, human health, and other farmers. Imposing these limits will have a range of both positive and negative impacts on agricultural production, food prices, ecosystems, and health. Pathways forward exist and are proposed based on existing studies, showing the gains that can be made from the farm to global scale to ensure sustainable water systems while sustaining agricultural production.

     
    more » « less
  2. null (Ed.)
  3. Abstract

    The earth's hydroclimate is continuing to change, and the corresponding impacts on water resource space‐time distribution need to be understood to mitigate their socioeconomic consequences. A variety of ecosystem services, transport processes, and human activities are synced with thetimingof peak annual runoff. To understand the influence of changing hydroclimate on peak runoff dates across the continental United States, we downscaled outputs of 10 Global Circulation Models for different future scenarios. Our results quantify robust spatial patterns of both negative (up to 3–5 weeks) and positive (up to 2–4 weeks) shifts in the dates of peak annual runoff occurrence by the end of this century. In snowmelt‐dominated areas, annual maxima are projected to shift to earlier dates due to the corresponding changes in snow accumulation timing. For regions in which the occurrence of springtime extreme soil wetness shifts to later time, we find that peak annual runoff is also projected to be delayed. These patterns of runoff timing change tend to be more pronounced for projections of higher greenhouse concentration in the future.

     
    more » « less
  4. Abstract

    Food demands are rising due to an increasing population with changing food preferences, placing pressure on agricultural production. Additionally, climate extremes have recently highlighted the vulnerability of the agricultural system to climate variability. This study seeks to fill two important gaps in current knowledge: how irrigation impacts the large-scale response of crops to varying climate conditions and how we can explicitly account for uncertainty in yield response to climate. To address these, we developed a statistical model to quantitatively estimate historical and future impacts of climate change and irrigation on US county-level crop yields with uncertainty explicitly treated. Historical climate and crop yield data for 1970–2009 were used over different growing regions to fit the model, and five CMIP5 climate projections were applied to simulate future crop yield response to climate. Maize and spring wheat yields are projected to experience decreasing trends with all models in agreement. Winter wheat yields in the Northwest will see an increasing trend. Results for soybean and winter wheat in the South are more complicated, as irrigation can change the trend in projected yields. The comparison between projected crop yield time series for rainfed and irrigated cases indicates that irrigation can buffer against climate variability that could lead to negative yield anomalies. Through trend analysis of the predictors, the trend in crop yield is mainly driven by projected trends in temperature-related indices, and county-level trend analysis shows regional differences are negligible. This framework provides estimates of the impact of climate and irrigation on US crop yields for the 21st century that account for the full uncertainty of climate variables and the range of crop response. The results of this study can contribute to decision making about crop choice and water use in an uncertain future climate.

     
    more » « less
  5. Abstract

    Future extreme precipitation (EP, daily rainfall amount over certain thresholds) is projected to increase with global climate change; however, its effect on groundwater recharge has not been fully explored. This study specifically investigates the spatiotemporal dynamics of groundwater recharge and the effects of extreme precipitation (daily rainfall amount over the 95th percentile, which is tagged by ranking the percentiles in each season for a base period) on groundwater recharge from 1950 to 2010 over the Northern High Plains (NHP) Aquifer using the Soil Water Balance Model. The results show that groundwater recharge significantly (p < 0.05) increased in the eastern NHP from 1950 to 2010, where the highest annual average groundwater recharge occurs compared to the central and the western NHP. In the eastern NHP, 45.1% of the annual precipitation fell as EP, which contributed 56.8% of the annual total groundwater recharge. In the western NHP, 30.9% of the annual precipitation fell as extreme precipitation, which contributed 62.5% of the annual total groundwater recharge. In addition, recharge by extreme precipitation mainly occurred in late spring and early summer, before the maximum evapotranspiration rate, which usually occurs in mid‐summer until late fall. A dry site in the western NHP and a wet site in the eastern NHP were analysed to indicate how recharge responds to EP with different precipitation regimes. The maximum daily recharge at the dry site exceeded the wet site when there was EP. When precipitation fell as non‐extreme rainfall, most recharge was less than 5 mm at both the dry and wet sites, and the maximum recharge at the dry site became lower than the wet site. This study shows that extreme precipitation plays a significant role in determining groundwater recharge. © 2016 The Authors Hydrological Processes Published by John Wiley & Sons Ltd.

     
    more » « less